[bookmark: _GoBack]Cross-site data replication for PostgreSQL through IBM Compose

Meta Information
This is information about the entire document.

Define the audience: The document primarily targets application developers and IT architects who are looking for solutions to meet demands about Disaster Recovery of application data stored in a PostgreSQL Database provisioned though IBM Compose.
In addition to Disaster Recovery this solution can be used also to improve scalability of applications by replicating data over nodes located in different regions.

Subtitle: Meet DR and scalability requirements of applications using PostgreSQL RDBMS provisioned through IBM Compose.

Define intended results: PostgreSQL database provisioned though IBM Compose offers (in the base offering) extraordinary HA solution achieved by replicating data over three different nodes. However, that is not enough when regulations demand that data must be replicated over different regions to protect sensitive information in case of major disasters. IBM Compose doesn’t provide this feature yet, and this is quite often an inhibitor for the adoption of IBM Compose for mission critical applications.

The main intent of this document is to describe a solution to fill this gap.

Authors: Kyle Brown, Arcangelo Di Balsamo, Eduardo Patrocinio

Keywords: PostgreSQL, Hybrid, DR, Disaster Recovery, Scalability, RDBMS, Replication, SymmetricDS

Document structure and content

Overview

IBM Compose offers best of the breed solutions to keep the HA of the provisioned databases by replicating data over three different nodes. However, that is not enough when regulations demand that data must be replicated over different regions to protect the integrity of sensitive information in case of major disasters.

Solutions like Backup and Restore, typically used to meet this requirement have the drawback of an unacceptable RTO and RPO for mission critical application that need to be up 99.999% of the time and that can tolerate a data loss only of few seconds.

Unfortunately, cross-region replication is not provided by IBM Compose, so in order to meet the DR requirements with an acceptable RTO and RPO, we are describing in this document a solution to meet the objective.

IBM Compose doesn’t allow direct access to the nodes where PostgreSQL is installed, that’s why we have found a replication which works only by instrumenting the database to replicate with SQL code injected though jdbc connections. The tool we have used is SymmetricDS. It’s an Open Source, more information are available at this link: https://www.symmetricds.org/ . There is also a commercial version called SymmetricDS Pro, provided by a company named JumpMind, which includes the installation and configuration wizard and a web UI to configure and manage SymmetricDS engine. Data replication happens though triggers that intercept changes to the DB and forwards them to one or more client node. The overhead and the latency are really good, however before using in production environments we recommend adequate sizing of the infrastructure according to the estimation of the volume of transactions to manage.

Prerequisites

To fully benefit from this document, you need at the least to meet the following prerequisites:
· PostgreSQL knowledge
· An IBM Compose Account
· A hosting environment to run SymmetricDS replication engine.
· A trial license of SymmetricDS Pro, to use the web UI.

Design considerations and planning

One of the key principles of Microservice-based architecture is that each microservice (computing element) has to be state-less. That facilitates scaling-up and scaling-down the number of serving nodes according to the load.
It also makes easier to implement automated actions to bring up nodes instances that went down due to crashes or infrastructure failures (like hardware problems).
In such architecture, it’s responsibility of the Database layer to persist status changes after each transaction. It poses high demands on such layer in terms on scalability and reliability. In fact, all microservices will rely on DB layer to retrieve and persist the status, and if the DB layer is not sized properly it can easily become a bottleneck for the system throughput. Moreover, DB layer has to be always high available and resilient to any kind of failures (also the ones not necessarily originated within IT boundaries, such as Electrical power outages, earthquakes, terrorist attacks, etc.).

PostgreSQL is an object-relational database (ORDBMS) widely used either for single-machine applications and much larger Internet facing applications. It is possible to configure a PostgreSQL deployment to have Master node and one or more Standby Server that keep a replica of the data stored by the applications connected to the Master. More information about how to create a cluster is available at https://www.postgresql.org/docs/9.2/static/runtime-config-replication.html.
The default replication systems provided by PostgreSQL is asynchronous by default, meaning that if the primary server crashes then some transactions that were committed may not have been replicated to the standby server, causing data loss. The amount of data loss is proportional to the replication delay at the time of failover. However, it is also possible to configure the cluster for Synchronous replication. In this case, all changes made by a transaction are transferred to one synchronous standby server before committing it. This extends the standard level of durability offered by a transaction commit.

[image:]

Whenever it is possible, using PostgreSQL replication addresses both resiliency and scalability requirements. Resilience is provided by the node redundancy, while scalability is achieved by relying on secondary nodes for read only (like reporting) transactions.
In some cases, using built-in PostgreSQL replication is not possible, like it happens with Cloud based deployments of PostgreSQL (f.i. IBM Compose), because typically the clustering is used by the platform itself to provide HA within the given region.
Another limitation is that writing operations are allowed only on the primary node. So if the application scalability requirements demand for globally dispersed deployments, all applications instances need to connect to the primary node that could be located in a different region that the application. In this case it is much better to have at least a Primary node with read/write access in each region.

This document describes how to replicate a PostgreSQL Database also when it’s not possible to use the built-in mechanism by using an Open Source tool called SymmetricDS. Such tool supports many RDBMS vendors (like IBM DB2, Oracle, Microsoft SQL) and it can also replicate data across multi-vendor Databases.
The solution described here can also be used to replicate data (through a live-update streaming process) from a Database located on-premises and one located in the Cloud by limiting replication only to a subset of the schema, in case business doesn’t allow to host sensitive data outside of company datacenter.

The streaming process provided by SymmetricDS happens through HTTPS protocol, to allow a safe and easy-to-setup firewall traversal solution. It is also possible to configure Bi-directional replications across 2 o more nodes.
[image:]

The simplest deployment of SymmetricDS can be made by installing the product on a single Node that connects to both the Master and the Secondary nodes to manage the replication. It’s also possible to have different nodes installed closer to the DB in case JDBC connection is not possible (or not allowed) over the used network channel.

Deploy your application or solution

Follow the step-by-step instructions in this section to set up a replication between two PostgreSQL databases deployed in two different IBM Compose regions. The procedure documented below also applies to replicate data from a PostgreSQL database deployed in IBM Compose and another PostgreSQL database deployed on-premises.

1. Log in to IBM Compose at the following link. You can create a Free 30 day trial, if you don’t have an account yet

2. Create the first MongoDB deployment, select “EU London 2” in the Location box, and name it case-postgresql-1: [image:]

3. Create a second MongoDB deployment, select “US Dallas 9” in the Location box, and name it case-postgresql-2

4. Go to the “Browser” tab and create a new database in case-postgresql-1 deployment, call it SampleDB: [image:]

5. Open SampleDB and create the Quotes table by running the following SQL statement “CREATE TABLE Quotes (author char(20), quotes char(50));” as shown in the picture below: [image:]

6. Create SampleDB database as you did in step 4 also for case-postgresql-2 deployment

7. Go now on the “Overview” tab of case-postgresql-1 deployment and take note of the connection string (user name and password, need to belong to a user who has read and write access to the DB): [image:]
8. Do the same for the second DB isnstace named case-postgresql-2
9. Download SymmetricDS Pro fro the following link http://www.jumpmind.com/products/symmetricds/download . Request a trial version for 30 days, unless you have a license already.
10. Follow the steps documented in the Tutorial at http://www.jumpmind.com/downloads/symmetricds/doc/3.8/html/tutorials.html#_quick_start . You need to specify connection strings and credentials that you noted down in steps 7 nd 8 for both source and target database. The link also documents how to setup the “Demo” environment, you don’t need to do that unless you are interested in learning more about SymmetricDS. Note that if SymmetricDS Pro is not activated yet, you are required to insert the license key after you configure the source node.
11. If the procedure completed successfully the replication is active and you can monitor the availability of each node and key performance indicators of replication process from SymmetricDS Pro Dashboard: [image:]

12. You can now verify if the replication process is working as expected by creating, updating or removing records in the source database (case-postgresql-1) and see how they are reflected to the target database (case-postgresql-2).

Manage your application and solution

It’s extremely important to monitor the availability of SymmetricDS replication engine. In fact, if it is down, events are queued temporarily in source DB and there is the risk of losing some of them in case of prolonged unavailability of the replication engine.

It is possible to run the SymmetricDS engine in a Docker container hosted by IBM Container Service. We recommend to deploying the engine in a Docker container group to improve the HA of the service. Pre-canned containers hosting SymmetricDS are available on DockerHub (https://hub.docker.com/r/communitycloud/symmetricds/, https://hub.docker.com/r/jdahlin/symmetricds/) .

In case of planned (or unplanned) unavailability of one of the two regions, it’s recommended to use a Backup/Restore approach (rather than relying on replication) for the fail-back process.

Resources

https://www.symmetricds.org/
http://www.jumpmind.com/products/symmetricds/overview
https://www.postgresql.org/
https://www.ibm.com/analytics/us/en/technology/cloud-data-services/compose/

4

image3.png
&% Compose

C' @ https://app.compose.io/ibm-478/deployments/new

&% COMPOSE

@ New Deployment

Production Deployments

o MongoDB

@ RethinkoB
@ Elasticsearch
QD Redis

o PostgreSQL
@ Rabbitma

@ MongoDB (classic)

Beta Deployments

etcd
ScyllaDB
MySQL

Alpha Deployments

Disque

New PostgreSQL Deployment

Deployment Name
case-postgresql-1

Location

EU London 2

Database Version

9.4.9

Allocate initial deployment resources

1GB 125GB
@ 1GB Storage

Start with 1GB Storage / 102MB RAM at $17.50/mo.

Create Deployment

Start at $17.50/month for 2 nodes
and 1GB Storage. After that it's just
$12.00/1GB as your usage grows.

Postgres is a powerful, open source object-
relational database which is highly customizable.
It's a feature-rich enterprise database with JSON
support, giving you the best of both the SQL and
NoSQL worlds. Learn more »

image4.png
&% case-postgresql-1 | Compose X ‘

MySQL enters Public Beta on Compose! Click Create Deployment to try it now. >

ﬁ» Overview

g Browser

<) Backups

Databases Create Database

database name size

SampleDB 8.9 MB

compose 6.65 MB

2]
@
=
S
@
[72]
[IL.]

+ Add-ons

image5.png
&% SampleDB | Compose X ‘

Tables
o saL

<;3 Extensions

SQL Query

\L Performance

CREATE TABLE Quotes (
1% Roles author char‘éZO% s

quotes char(50
£+ Admin DK

image6.png
&% Compose

MySQL enters Public Beta on Compose! Click Create Deployment to try it now. -

£ Overview

@ Browser

<) Backups

Deployment Overview

Database PostgreSQL 9.4.9

\® Jobs]
Location london-02 on softlayer
{@} Settings
Status Healthy ©
~ Metrics
onnection vailable ©
Ci i TCP Availabl
E&T Logfiles
Usage 1GB of 1GB Disk ©
& Access D case-postgresq|-1
A securt Billing $17.50/month ©
ecurity
+ Add-ons Access Admin ©

Connection info

Credentials

Username: admin
Password: eeeeeeeeee Show/Change

Connection string

postgres://[username]:[password]@sl-eu-lon-2-portal.1.dblayer.com:15307/compose

SSL is enabled. Check with your driver to properly configure your SSL connection.

Command line

image7.png
B server - SymmetricDS Pro

(& ‘ ® localhost:31415/app

.Symmctrlcbs Manage

Configure

Explore | Help ’

‘ server

#’ ‘ Logout ’

Recent Batch Activity Channel Performance

Activity

Id

Node

Channel

Status

Rows

Elapsed

Remainir &

T \ RO IO G N2 \ \ N

‘ Sent Rows :’ ‘1 ’ ‘ Hours ¢’ Select All Select None
1.0~ B v config
B V) default
0.8 - [« reload
0.6 -
0.4-
0.2 -
0.0 -
ST S S O
@e s & e‘ e‘ e‘ﬂge s e“@e‘ e“@e“&‘

Unsent Batches

There are 0 data rows that are unrouted.

Showing alerts that have occurred in the past 20 minutes.

Logging Alerts

Clear

Batch Count

Data Count

Status

Node Id

Oldest Batch

3

Last Occurrence = First Occurrence =~ Count

1

1

New

12:02:45 PM

@ | No Alerts

0

image1.tiff
Secondary Sy Secondary

image2.tiff
Node Group : client Node Group : server

u«-»u
-«-».

